public class GroebnerBasis extends AbstractFunctionEvaluator
Constructor and Description |
---|
GroebnerBasis() |
Modifier and Type | Method and Description |
---|---|
static IAST |
computeGroebnerBasis(IAST listOfPolynomials,
IAST listOfVariables,
boolean stopUnevaluatedOnPolynomialConversionError)
Try to compute a Grobner basis for all expressions in
listOfPolynomials which are polynomials for the given
listOfVariables . |
IExpr |
evaluate(IAST ast,
EvalEngine engine)
Symbolic evaluation of a function.
|
createRuleFromMethod, getNormalizedNegativeExpression, getNormalizedNegativeExpression, getPeriodicParts, getPureImaginaryPart, getRuleAST, initSerializedRules, isNegativeExpression, setUp
numericEval
public IExpr evaluate(IAST ast, EvalEngine engine)
AbstractFunctionEvaluator
ast.get(0)
(or alternatively ast.head()
) contains the
head (i.e. the function symbol) of this abstract syntax tree (AST). ast.arg1()
to ast.get(n)
the ast
contains the first to n-th argument of the
function (alternatively you get the first to fifth argument with the methods arg1()
, arg2()
,...
arg5()
).Validate
class to check the number or types of arguments in the evaluate
method.null
value without throwing an exception!evaluate
in interface IFunctionEvaluator
evaluate
in class AbstractFunctionEvaluator
ast
- the abstract syntax tree (AST) which should be evaluatedengine
- the users current evaluation enginenull
, if evaluation isn't possibleValidate
,
IExpr.head()
,
IAST.arg1()
,
IAST.arg2()
,
IAST.arg3()
public static IAST computeGroebnerBasis(IAST listOfPolynomials, IAST listOfVariables, boolean stopUnevaluatedOnPolynomialConversionError)
listOfPolynomials
which are polynomials for the given
listOfVariables
. Append the non-polynomial expressions at
the end of the resulting list if necessary.listOfPolynomials
- a list of polynomialslistOfVariables
- a list of variable symbolsstopUnevaluatedOnPolynomialConversionError
- F.NIL
if
stopUnevaluatedOnPolynomialConversionError==true
and
one of the polynomials in listOfPolynomials
are not
convertible to JAS polynomials