public class GroebnerBasis extends AbstractFunctionEvaluator
| Constructor and Description |
|---|
GroebnerBasis() |
| Modifier and Type | Method and Description |
|---|---|
static IAST |
computeGroebnerBasis(IAST listOfPolynomials,
IAST listOfVariables,
boolean stopUnevaluatedOnPolynomialConversionError)
Try to compute a Grobner basis for all expressions in
listOfPolynomials which are polynomials for the given
listOfVariables. |
IExpr |
evaluate(IAST ast,
EvalEngine engine)
Symbolic evaluation of a function.
|
createRuleFromMethod, getNormalizedNegativeExpression, getNormalizedNegativeExpression, getPeriodicParts, getPureImaginaryPart, getRuleAST, initSerializedRules, isNegativeExpression, setUpnumericEvalpublic IExpr evaluate(IAST ast, EvalEngine engine)
AbstractFunctionEvaluatorast.get(0) (or alternatively ast.head()) contains the
head (i.e. the function symbol) of this abstract syntax tree (AST). ast.arg1() to ast.get(n) the ast contains the first to n-th argument of the
function (alternatively you get the first to fifth argument with the methods arg1(), arg2(),...
arg5()).Validate class to check the number or types of arguments in the evaluate
method.null value without throwing an exception!evaluate in interface IFunctionEvaluatorevaluate in class AbstractFunctionEvaluatorast - the abstract syntax tree (AST) which should be evaluatedengine - the users current evaluation enginenull, if evaluation isn't possibleValidate,
IExpr.head(),
IAST.arg1(),
IAST.arg2(),
IAST.arg3()public static IAST computeGroebnerBasis(IAST listOfPolynomials, IAST listOfVariables, boolean stopUnevaluatedOnPolynomialConversionError)
listOfPolynomials which are polynomials for the given
listOfVariables. Append the non-polynomial expressions at
the end of the resulting list if necessary.listOfPolynomials - a list of polynomialslistOfVariables - a list of variable symbolsstopUnevaluatedOnPolynomialConversionError - F.NIL if
stopUnevaluatedOnPolynomialConversionError==true and
one of the polynomials in listOfPolynomials are not
convertible to JAS polynomials