public class PolynomialsUtils
extends java.lang.Object
Modifier and Type | Class and Description |
---|---|
static interface |
PolynomialsUtils.RecurrenceCoefficientsGenerator
Interface for recurrence coefficients generation.
|
Modifier and Type | Method and Description |
---|---|
static IAST |
buildPolynomial(int degree,
IExpr x,
java.util.List<org.apache.commons.math4.fraction.BigFraction> coefficients,
PolynomialsUtils.RecurrenceCoefficientsGenerator generator)
Get the coefficients array for a given degree.
|
static IAST |
createChebyshevPolynomial(int degree,
IExpr x)
Create a Chebyshev polynomial of the first kind.
|
static IAST |
createHermitePolynomial(int degree,
IExpr x)
Create a Hermite polynomial.
|
static IAST |
createLaguerrePolynomial(int degree,
IExpr x)
Create a Laguerre polynomial.
|
static IAST |
createLegendrePolynomial(int degree,
IExpr x)
Create a Legendre polynomial.
|
public static IAST createChebyshevPolynomial(int degree, IExpr x)
Chebyshev polynomials of the first kind are orthogonal polynomials. They can be defined by the following recurrence relations:
T0(X) = 1 T1(X) = X Tk+1(X) = 2X Tk(X) - Tk-1(X)
degree
- degree of the polynomialpublic static IAST createHermitePolynomial(int degree, IExpr x)
Hermite polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:
H0(X) = 1 H1(X) = 2X Hk+1(X) = 2X Hk(X) - 2k Hk-1(X)
degree
- degree of the polynomialpublic static IAST createLaguerrePolynomial(int degree, IExpr x)
Laguerre polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:
L0(X) = 1 L1(X) = 1 - X (k+1) Lk+1(X) = (2k + 1 - X) Lk(X) - k Lk-1(X)
degree
- degree of the polynomialpublic static IAST createLegendrePolynomial(int degree, IExpr x)
Legendre polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:
P0(X) = 1 P1(X) = X (k+1) Pk+1(X) = (2k+1) X Pk(X) - k Pk-1(X)
degree
- degree of the polynomialpublic static IAST buildPolynomial(int degree, IExpr x, java.util.List<org.apache.commons.math4.fraction.BigFraction> coefficients, PolynomialsUtils.RecurrenceCoefficientsGenerator generator)
degree
- degree of the polynomialcoefficients
- list where the computed coefficients are storedgenerator
- recurrence coefficients generator