public class PolynomialsUtils
extends java.lang.Object
| Modifier and Type | Class and Description | 
|---|---|
| static interface  | PolynomialsUtils.RecurrenceCoefficientsGeneratorInterface for recurrence coefficients generation. | 
| Modifier and Type | Method and Description | 
|---|---|
| static IAST | buildPolynomial(int degree,
               IExpr x,
               java.util.List<org.apache.commons.math4.fraction.BigFraction> coefficients,
               PolynomialsUtils.RecurrenceCoefficientsGenerator generator)Get the coefficients array for a given degree. | 
| static IAST | createChebyshevPolynomial(int degree,
                         IExpr x)Create a Chebyshev polynomial of the first kind. | 
| static IAST | createHermitePolynomial(int degree,
                       IExpr x)Create a Hermite polynomial. | 
| static IAST | createLaguerrePolynomial(int degree,
                        IExpr x)Create a Laguerre polynomial. | 
| static IAST | createLegendrePolynomial(int degree,
                        IExpr x)Create a Legendre polynomial. | 
public static IAST createChebyshevPolynomial(int degree, IExpr x)
Chebyshev polynomials of the first kind are orthogonal polynomials. They can be defined by the following recurrence relations:
T0(X) = 1 T1(X) = X Tk+1(X) = 2X Tk(X) - Tk-1(X)
degree - degree of the polynomialpublic static IAST createHermitePolynomial(int degree, IExpr x)
Hermite polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:
H0(X) = 1 H1(X) = 2X Hk+1(X) = 2X Hk(X) - 2k Hk-1(X)
degree - degree of the polynomialpublic static IAST createLaguerrePolynomial(int degree, IExpr x)
Laguerre polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:
        L0(X)   = 1
        L1(X)   = 1 - X
  (k+1) Lk+1(X) = (2k + 1 - X) Lk(X) - k Lk-1(X)
 
 
 degree - degree of the polynomialpublic static IAST createLegendrePolynomial(int degree, IExpr x)
Legendre polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:
        P0(X)   = 1
        P1(X)   = X
  (k+1) Pk+1(X) = (2k+1) X Pk(X) - k Pk-1(X)
 
 
 degree - degree of the polynomialpublic static IAST buildPolynomial(int degree, IExpr x, java.util.List<org.apache.commons.math4.fraction.BigFraction> coefficients, PolynomialsUtils.RecurrenceCoefficientsGenerator generator)
degree - degree of the polynomialcoefficients - list where the computed coefficients are storedgenerator - recurrence coefficients generator